
Entropy Makes the Collatz Sequence Go Down

Bradley Berg, author
bb@techneon.com

Erik Slader, editor
eslader3@gmail.com

Abstract
We look at the Collatz Sequence from an information theory per-
spective to lay out its underlying computational mechanics. The
mechanisms are similar to those used in pseudo-random number
generators and one-way hashes.

An equivalent restatement of the Collatz sequence steps through
alternating chains of even and odd values. This variation constitutes
a pseudo-random number generator. The operations used to scram-
ble values are unbiased; resulting in an even distribution of ones
and zeros. The entropy of this mechanism is high and yields fairly
randomized values. In turn the sequence acts according to its statis-
tically average gain; forcing it to decline and eventually terminate.

1. Introduction
The computational mechanics of the Collatz sequence are analyzed
to determine the odds of taking an even or odd step. Using the
following definition of the sequence we shall show the average odds
of taking either step are even. In this case, statistically the sequence
will on average decline and eventually terminate. This variation is
often referred to as the Syracuse sequence.

N is even: N ′ =
N

2

N is odd: N ′ =
3N + 1

2

The gain of a each transition is its output divided by the input
(N’ / N). For the Odd transition, as N gets larger the ”+ 1” term
quickly becomes insignificant. To compute the gain for the Odd
transition in the limit we can safely drop the ”+1” term.

Output / Input Gain

N is even: N
2N

0.5

N is odd: 3N+1
2N

1.5

The total gain of a series of transitions is the product of the gains
in each transition. Based on this the average gain of a sequence
depends on the probability of taking either an odd or even path.

Gs = 1.5podd · 0.5peven

Copyright © 2024 Bradley A. Berg, all rights reserved.

The choice of which path is taken is determined by the low order
bit of the input value. If the sequence produces uniformly random-
ized values then the chances of taking either transitions is 50:50.
This implies the low order bit would need to be uniformly random
over the sequence. The average gain of a uniformly randomized
sequence is then:

Average transaction gain = ⟨transaction gain⟩p(⟨transaction⟩)

Average odd gain = 1.50.5 = 1.22474

Average even gain = 0.50.5 = 0.70711

Average sequence gain: Ga = 1.22474 · 0.70711 = 0.86603+

The statistical average gain in each step is less than one, so on
average the sequence declines. However, the gain in a single run for
a given Seed can vary significantly. There could potentially still be
a series where the the total gain indefinitely exceeds one and never
terminates.

Breakeven Gain = 1.5p · 0.51−p = 1

ln
(
1.5p · 0.51−p) = ln(1) = 0

= ln(1.5p) + ln(0.51−p) = 0

= p · ln(1.5) + (1− p) · ln(0.5) = 0

p · 0.40546 = −(1− p) · (−0.69315)

0.40546

−0.69315
=

−(1− p)

p

−0.58497 = −1− p

p

−0.58497− 1 = −1

p

p =
1

1.58497
≈ 0.63093

Gain = 1.50.63 · 0.50.37 ≈ 0.99898 Under breaking even

Gain = 1.50.64 · 0.50.36 ≈ 1.01001 Over breaking even

For any sequence run to continually increase and never termi-
nate it would have to sustain an average gain over one. To break
even Odd transitions would need to occur about 64% of the time.
They would need to be applied over 1.7 times more than evens;
which is substantially skewed. It remains to be shown that the se-
quence can not intrinsically favor Odd transitions.

1



1.1 Even and Odd Chains
Consecutive iterations of the same kind of transition in a run form
a chain. Even chains start with an even value that in binary will
have one or more trailing zeroes. After applying the transitions in
an Even chain the result simply has the low order zeros removed.

Odd chains consume an odd input and have multiple odd in-
termediate values. Eventually an Odd chain transitions to an even
number. The number of consecutive low order one bits determines
the chain length. For example, an input of 19 is a binary 10011 so
the subsequent chain has two Odd transitions: 19 → 29 → 44

Let k be the number of low order one bits and j is the input
value with the low one bits removed plus 1.

The input to an Odd chain has the form: j · 2k − 1
The output of the chain simplifies to: j · 3k − 1

N1 =
3N + 1

2
First transition

=
3(j · 2k − 1) + 1

2
Substitute N = j · 2k − 1

=
3j · 2k − 3 + 1

2

=
3j · 2k − 2

2

= 31 · j · 2k−1 − 1

Ni+1 =
3
(
3i · j · 2k−i − 1

)
+ 1

2
Subsequent transitions

=
9 · j · 2k−i − 3 + 1

2

=
9 · j · 2k−i − 2

2

= 3i+1 · j · 2k−i−1 − 1

Nk = 3k · j − 1 Odd chain output

Each run of the Collatz sequence will have segments with alter-
nating Even and Odd chains. For reference, Table 1 lists the first
few chains for the series beginning with a Seed of 27.

Syracuse Sequence Even Odd j k
27 → 41 → 124 → 62 27 → 62 7 2
31 → 31 31 1
47 → 71 → 107 → 161 → 242 → 242 1 5
121 → 121 121 1
364 → 182 → 182 61 1
91 → 91 91 1
137 → 206 → 206 23 2
103 → 103 103 1
155 → 233 → 350 → 350 13 3
175 → 175 175 1
263 → 395 → 593 → 890 → 890 11 4

Table 1. Partial Syracuse Run: Seed = 27

1.2 Combining Even And Odd Chains
A pair of an Even and an Odd chain can be algebraically merged
into a single step. This gives us a sequence defined as a single tran-
sition. Since all intermediate values using this combined definition

are even, an initial odd Seed needs to first transition one step using
the ”3n + 1” rule to reach the first even number.

Every input has the binary form: [j] [ones] [zeros]

N = ([j + 1] · 2ko − 1) · 2kz → [j + 1] · 3ko − 1

where:

• kz: Number of trailing zeros in N

• ko: Number of the next higher set of ones in N

• j: N shifted right by kz + ko bits: N
2kz+ko

Using the previous example, initially we transition 27 to 82.
From there the next few steps are in Table 2.

j ko kz binary
82 → 41 → 124 → 62 20 1 2 10100 10
31 → 484 → 242 0 5 1 0 111110

121 → 364 → 182 60 1 1 111100 10
91 → 274 → 206 22 2 1 10110 110

103 → 310 → 466 12 3 1 1100 1110
233 → 700 → 350 116 1 1 1110100 10
593 → 1780 → 890 10 4 1 1010 11110

Table 2. Combined Even And Odd Chains

2. Sequence Entropy
Statistical averages only hold when the odds are fair. In this section,
we show why the dice are not loaded. Shannon entropy is a measure
of information denoting the level of uncertainty about the possible
outcomes of a random variable [1].

H = −p0 · log2(p0)− p1 · log2(p1)
where:

• p0 is the probability a bit is zero.
• p1 is the probability a bit is one (1− p0).

A set of coin tosses has p0 = p1 = 0.5 so its entropy is 1;
totally random. When looking at the entropy of bits in a number
then p0 is determined by the percentage of zero bits. For the binary
number, 1010 1111, p0 is 0.25 (H = 0.811). Strings of all ones
or zeros have no entropy (H = 0). For a binary number, we are
measuring the bits in the number horizontally.

Bits in a series of numbers have two dimensions - horizontal
bits in each individual value and vertical bits over the extent of
the series. We can also measure entropy vertically over a series
of numbers. That means we can observe the entropy of select bit
positions in each value in the series.

For Collatz, the low order bit is of interest because it determines
whether a number is odd or even. In turn, that determines which
transition to take. When the entropy of the low order bit is high,
then on average there are nearly as many Even transitions as Odds.

Each kind of chain takes a value where the low order bits are a
string of zeros or ones and either removes or replaces them. Even
inputs remove low order zeros. The expression for Odd chain inputs
has a 2k term that transitions to a 3k term.

Since strings of zeros have no entropy and the j term has
positive entropy, entropy increases each time an Even transition is
applied. In Odd transitions, entropy is also increased by removing
the repeated ones and again by scrambling the remaining bits. The
upper bits, j, are scrambled by multiplying j by a power of 3. As
a run progresses, this increase in entropy randomizes the values.
The number of Odd and Even transitions balance out driving the
sequence downward and eventually forcing it to terminate.

2



2.1 Losing Information
A Seed can be contrived to produce a run of any desired length.
The longer the run, the larger the Seed has to be in order to contain
enough information to influence the desired outcome. Initially, as
a run progresses, information contained in the Seed is lost. When
there are two possible ways to reach a value in a run we lose the
information about which path was taken to reach it [2].

Odd numbers always transition 3n + 1 to even numbers, so
an odd value can only be reached from one even value. However,
certain even numbers can be reached from either an Odd or Even
transition (e.g. An output of 16 can be reached from either 32 or 5).

32 → 32/2 = 16

5 → 3 · 5 + 1 = 16

When transitioning to an even value where even ≡ 1 (mod 3),
then the previous value could have been either:

2 · even or (even− 1)/3

For Collatz, a bit of information contained in the Seed is lost
each time one of these select even numbers is reached. Once all
bits in the Seed are scrubbed then this initial phase is complete.
Any attempt to contrive a Seed to skew results can only directly
affect values during this phase.

One-way hash functions rely on the concept of lost information
[3]. Secure hashes have many ways to reach each hashed value.
This is how passwords are encoded and used for authentication. By
this metaphor, you can think of the Seed as a password and the
Collatz sequence as a trivial one-way hash schema used to mask it.

2.2 Randomization Phase
This next phase is critical as this is where the sequence runs below
the Seed. The sequence is rewritten as a pseudo-random number
(PRNG) generator. Hastad et al. (1999) [4] show that any one-way
hash can be used to create a PRNG. Uniformly randomized values
eventually trend towards their average. In turn, this drives transi-
tions towards their average gain. In the introduction, we showed
that Collatz has an average gain of 0.86603, eventually driving the
series below the Seed value.

We’ll be using the combined series from section 1.2 for each
randomization step. The value, j, is always even so the [j+1] term
will simply set the low order bit to one as there is no carry. Also,
the product will have an odd result so that decrementing by 1 will
likewise just clear the low order bit.

Input: ([j + 1] · 2ko − 1) · 2kz

Result: [j + 1] · 3ko − 1 = [j ⊕ 1] · 3ko ⊕ 1

In Table 3, the top line has steps for a randomization phase
that begins with 647. Calculations for each combined transition
(1942, 2186, 1640, 308, 116) are shown in binary.

A pseudo-random number generator shown in Figure 1 repeat-
edly applies a function to produce a series of values. In order to
produce uniformly random numbers, operators cannot be biased to-
wards producing either more ones or zeros. In a uniform sequence,
the entropy will approach one. If it is not uniform, the bias will
show up in the operators.

1942 2186
Input 11110010 110 1000100010 10
Shift Right 11110010 1000100010
Xor 1 11110011 1000100011
Times 3ko 100010001011 11001101001
Xor 1 1000100010 10 1100110 1000

1640 116
Input 1100110 1000 100110 100
Shift Right 1100110 100110
Xor 1 1100111 100111
Times 3ko 100110101 1110101
Xor 1 100110 100 1110100

Table 3. Hash Function Example In Binary

Figure 1. Sequence Redefined As A Hash Function

Select
If you remove some low order bits of a random number, the

remaining part will still be random. Using the upper bits from the
input still gives random values. Due to the way the value is split,
the selected upper value will be even. The low order bit is zero, and
all the other bits are the randomized portion.

Logical Exclusive Or 1
The first Exclusive Or sets the low bit of the selected region.

This is balanced out by clearing it in the final step with another
Exclusive Or.

Product
The product of a random variable and a constant is also random,

but with a larger gap between them. Multiplying random numbers
from 1 to 10 by 3 yields random numbers from 3 to 30. They simply
have a gap of 3 between them instead of 1.

The product used to scramble values is equivalent to repeated
sums of the input. Table 4 shows all combinations for summing
each bit. The three inputs (A, B, Carry In) and the two outputs
(Sum, Carry Out). It also shows changes (Exclusive Or) between
the sum and inputs A and B.

Input bits A and B are vertically aligned and are altered by
addition. Carries are applied horizontally and propagate to higher
order bits. This way, bits in both directions become scrambled.

3



A B Carry Sum Carry A ⊕ B ⊕
In Out Sum Sum

0 0 0 0 0 0 0
0 0 1 1 0 1 1
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 0 1 0 1 1 0
1 1 0 0 1 1 1
1 1 1 1 1 0 0

Table 4. Bitwise Addition

Note that all the columns in the table are different. This is how
bits are scrambled to produce randomized results. Also note that all
columns contain 4 zeros and 4 ones. This balance produces results
that are unbiased towards either zero or one bits. The end result is
a series of uniformly distributed pseudo-random numbers.

Outputs in any individual run depend on the values kz and
ko. The more random they are, the more random the run. The k
values measure the width of a horizontal subset of bits in each
value. Pseudo-random number generators that conflate operations
on horizontal and vertical sets of bits rely on the independence of
these orthogonal values.

The repeated low order zeros and the one bits above them that
might have lower entropy are continuously removed and replaced
with scrambled bits. This creates a self-regulating system that con-
tinuously randomizes the lower bits. Those bits control the selec-
tion operation in the next round.

When runs have uniformly randomized values then, revisiting
the Syracuse sequence, the average number of Even and Odd tran-
sitions will balance out. In turn, this causes the run to decrease since
the average gain is less than one. If instead the sequence was not
uniformly random, then we would see bias amongst the arithmetic
operations used in each round.

Examples where Seeds produce long runs will initially have
highly skewed values, but that cannot be sustained. As values
become more randomized as the series progresses, they will trend
towards average results. As in coin tossing, even if you get lucky
and call the results of several coin tosses, your luck will run out in
the long run.

2.3 Reduction To One
The previous Randomization phase leaves us with a value of N that
is below the Seed. It is well understood that once this happens, we
know the series will eventually terminate at one. Firstly, we know
all values below some arbitrary small number M (say 10) transition
to one.

Next, starting with the next higher Seed, M + 1, we transition
until it reaches M or less. Since we already know Seeds of M or
less will reach one, by induction, once a series goes below its Seed
we know it will reach one. This is why even Seeds are uninteresting
as they immediately decline.

When measuring the length of a run, including the Reduction
phase is not useful and can distort your analysis. As a run winds
down numbers get smaller and can become more irregular. Instead
of defining the run length as the number of steps to one, use only the
number of odd steps until the series goes below the Seed. Usually
it’s more practical to count only odd steps because they correspond
to the number of terms in the algebraic expansion of a run.

2.4 Observed Entropy
The first few values in a run will have lower entropy until enough
bits are included to average out. In the Introduction, we’ve shown
that to sustain an infinite run there needs to be 64% or more ones.
This gives an entropy of:

H = −0.36 · log2(0.36)− 0.64 · log2(0.64) = 0.94268

Individual runs will typically have some jitter since we are
performing discrete computations. Very long runs, which are rare,
should have higher entropy towards the end. In the Information
Loss phase, long runs will be skewed towards more odd steps
to make the values grow larger up front. Short runs where evens
dominate won’t even make it to the Randomization phase.

To compute the entropy, the low order zero bit is discarded as it
is fixed. Also, since the values have a variable width, the uppermost
bit is always one and is also discarded. This differs from practical
PRNGs where the values have a fixed width.

To see the randomization in action, Table 5 lists the entropy for
the first two phases. Entropy is computed using the accumulated
number of ones and zeros in the run. The counts of ones and zeros
are reset at the start of the Randomization phase so that those
computations are completely separate. Even in the Information
Loss phase, entropy is well above the 0.94268 bound right out of
the gate. The computed length of the Information Loss phase is
quite conservative.

Seed = 4 50449 75045 09599 = 10 00d1 0da5 de9fbase16

Step Entropy Ones Zeros Notes
1 0.99750 24 27 Information
2 0.99993 52 51 Loss
3 0.99988 77 79 phase 1
4 0.99998 105 104
5 0.99934 136 128
6 0.99965 163 156
7 0.99950 194 184
8 0.99986 222 216
9 0.99999 250 248

10 0.99994 281 276
11 0.99973 314 302
12 0.99984 342 332
13 0.99993 369 362
14 0.99966 402 385
15 0.99983 428 415
16 0.99989 456 445
17 0.99982 487 472
18 0.99975 518 499
19 0.99988 545 531
20 0.99920 31 29 Randomization
30 1.00000 321 321 phase 2
40 0.99978 606 585
50 0.99966 899 861
60 0.99983 1192 1156
70 0.99969 1489 1429
80 0.99996 1770 1744
90 0.99963 2105 2012

100 0.99967 2410 2309
110 0.99876 2772 2551
120 0.99828 3105 2816
130 0.99890 3387 3133

Table 5. Example Of Entropy In A Run

4



If the hash function had a bias, it would show up by running
it over many consecutive numbers. Here the hash was run over a
million consecutive even numbers. Table 6 shows the cumulative
entropy of the resulting values; which is very near one as expected.

Iteration Entropy Ones Zeros
50,000 0.99350 475,206 574,794

100,000 0.99721 984,678 1,115,322
150,000 0.99886 1,512,405 1,637,595
200,000 0.99966 2,054,339 2,145,661
250,000 0.99984 2,585,879 2,664,121
300,000 0.99970 3,086,254 3,213,746
350,000 0.99987 3,625,941 3,724,059
400,000 0.99970 4,113,665 4,286,335
450,000 0.99976 4,638,681 4,811,319
500,000 0.99983 5,168,585 5,331,415
550,000 0.99991 5,711,156 5,838,844
600,000 0.99996 6,255,089 6,344,911
650,000 1.00000 6,816,718 6,833,282
700,000 0.99994 7,415,041 7,284,959
750,000 1.00000 7,882,886 7,867,114
800,000 1.00000 8,392,173 8,407,827
850,000 1.00000 8,925,576 8,924,424
900,000 1.00000 9,428,185 9,471,815
950,000 0.99999 9,944,542 10,005,458

1,000,000 0.99999 10,466,775 10,533,225
1,048,576 1.00000 11,012,891 11,007,205

Table 6. Entropy Of The Hash Function

Table 7 illustrates a contorted sequence where some bits are
artificially forced to one. This shows how skewed the operators
have to get in order for entropy to drop below 0.94268; where
it would increase indefinitely. 11 out of 20 bits are needed to be
forced to one to sufficiently skew the result.

Value Of Final
Forced Bits Entropy Ones Zeros

0 1.00000 11,012,891 11,007,205
10,000 0.99995 11,102,306 10,917,790
11,000 0.99971 11,229,280 10,790,816
11,100 0.99931 11,350,975 10,669,121
11,500 0.99916 11,385,687 10,634,409
15,500 0.99892 11,435,329 10,584,767
55,500 0.99703 11,716,482 10,303,614

155,500 0.99727 11,687,638 10,332,458
175,500 0.98541 12,573,465 9,446,631
177,500 0.96792 13,323,124 8,696,972
177,700 0.95400 13,775,529 8,244,567
177,740 0.94266 14,093,550 7,926,546

Table 7. Entropy Of A Contorted Hash Function

3. Conclusion
The Collatz sequence incorporates principle mechanisms com-
monly used to create pseudo-random number generators.

• To overcome a contrived Seed, one-way hashing smooths out
any irregularities.

• Repeated low order one and zero bits are erased at each step.
• A product of independent values randomizes output values.

Any individual run is partitioned into three phases. In the initial
phase the Seed value can influence the outcome to produce arbi-
trarily long runs. After that the series generates randomized values
until it goes below the Seed value. From there it is guaranteed to
reduce to one provided the run is not circular.

A uniformly randomized series eventually moves towards a
statistically average gain. For a Collatz series to sustain an average
gain above one would require over 1.7 times more Odd transitions
than Even. This is well above parity. Instead, randomization forces
the series to average out and decrease until it inevitably goes below
the Seed. Once it does that we know it will terminate.

The random behavior of the Collatz sequence makes it impossi-
ble to prove algebraically. Conway[5] showed that a generalization
of the 3N + 1 problem is undecidable. Trying to make sense of
the values generated by the sequence is akin to analyzing values
produced by any random number generator. The irony is that this
randomness is the force that leads to convergence.

References
[1] Behrouz Zolfaghari, Khodakhast Bibak, and Takeshi Koshiba. The

Odyssey of Entropy: Cryptography In Entropy 2022, 24(2), 266.
https://www.mdpi.com/1099-4300/24/2/266/pdf

[2] John C. Baez, Tobias Fritz, Tom Leinster. A Characterization of
Entropy in Terms of Information Loss In Entropy 2011, 13(11), 1945-
1957
https://mdpi-res.com/d_attachment/entropy/entropy-1
3-01945/article_deploy/entropy-13-01945-v2.pdf

[3] Russell Impagliazzo, Leonid A. Levin, Michael Luby. Pseudo-
random Generation from one-way functions” In David S. Johnson
(ed.),Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washington, USA, ACM pp.
12-24,
doi:10.1145/73007.73009, S2CID 18587852
https://dl.acm.org/doi/pdf/10.1145/73007.73009

[4] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, Michael Luby. A
pseudo-random generator from any one-way function. In Siam Journal
on Computation 28(4):1364-1396, 1999.
https://epubs.siam.org/doi/10.1137/S0097539793244708

[5] John H. Conway. Unpredictable iterations. In Proc. 1972 Number
Theory Conf., Univ. Colorado, Boulder. pp. 49-52.

5

https://www.mdpi.com/1099-4300/24/2/266/pdf
https://mdpi-res.com/d_attachment/entropy/entropy-13-01945/article_deploy/entropy-13-01945-v2.pdf
https://mdpi-res.com/d_attachment/entropy/entropy-13-01945/article_deploy/entropy-13-01945-v2.pdf
https://dl.acm.org/doi/pdf/10.1145/73007.73009
https://epubs.siam.org/doi/10.1137/S0097539793244708


A. Appendix
Here are the entropy values for the Randomization phase of some long runs. The Sample Size is the number of values produced by the
algorithm for randomization. All of the entropy values are well above 0.94268; the entropy required to produce an infinitely long run. The
entropy is then computed using the total number of ones and zeros in each run.

Run Sample Run Sample
Length Seed Entropy Size Length Seed Entropy Size

200 3718 71359 0.99979 68 340 126 76301 41951 0.99994 116
205 1958 82855 0.99980 70 345 1 22350 60455 0.99973 119
210 1274 56255 0.99983 95 350 401 88187 72839 0.99979 129
215 1937 66367 0.99899 67 355 724 40525 17375 0.99801 118
220 19681 65887 0.99995 82 360 825 34095 41119 0.99938 122
225 6560 55295 0.99993 86 365 712 17685 99551 0.99972 132
230 13046 21055 0.99981 83 370 1220 47117 99967 0.99612 120
235 1 35512 07911 0.99998 82 375 2268 60535 77471 0.99917 133
240 32463 39311 0.99929 80 380 8939 48210 46783 0.99935 141
245 90870 90719 0.99952 73 385 17070 06081 85759 0.99994 122
250 18014 87687 0.99891 83 390 14939 44647 67771 0.99451 131
255 1 48843 35615 0.99982 92 395 2636 51570 99263 0.99985 131
260 2 39626 04007 1.00000 92 400 21799 62942 60379 0.99936 136
265 2 52445 54015 1.00000 94 405 12918 29891 91335 0.99939 140
270 27410 96351 0.99950 86 410 5637 56180 56351 0.99930 153
275 5 98341 74399 0.99830 92 415 5939 15976 23151 0.99930 154
280 31365 10111 0.99944 96 420 48746 49581 33967 0.99923 153
285 3 73541 80511 0.99850 96 425 41352 12952 02335 0.99810 151
290 5 01732 47487 0.99918 97 430 1668 08468 87871 0.99928 151
295 21 53848 33215 0.99991 104 435 28943 78244 38015 0.99719 152
300 106 36415 82407 0.99992 102 440 12087 56891 76347 0.99824 158
305 28 43969 52295 0.99929 105 445 6367 11449 15935 0.99826 160
310 2 01366 15963 0.99955 106 450 50656 70902 68923 0.99994 170
315 2 12138 83483 0.99963 108 455 7066 59241 17439 0.99819 163
320 47 83372 65823 0.99977 114 460 8 11790 31161 74975 0.98410 158
325 25 19636 62655 0.99971 117 465 7 84895 27993 66463 0.99336 151
330 225 38353 49759 0.99974 105 470 4 64802 52950 28271 0.99795 151
335 2 61309 34783 0.99950 114 475 5 68559 52882 94911 0.99948 174

6


	Introduction
	Even and Odd Chains
	Combining Even And Odd Chains

	Sequence Entropy
	Losing Information
	Randomization Phase
	Reduction To One
	Observed Entropy

	Conclusion
	Appendix

